Reaching a new resolution standard with electron microscopy
نویسنده
چکیده
The invention of spherical aberration correctors has been the most significant contribution to the field of transmission electron microscopy since the field emission gun. Chromatic and spherical aberration, well known from optics, also play a role in electron microscopy. Lens aberrations are not unique to the magnetic lenses used in electron microscopes, but rather a fundamental problem of optical systems. Because of spherical aberration, rays entering a round lens system away from the optical axis are refracted more strongly than those entering close to the optical axis (see Fig. 1, top). A similar effect is chromatic aberration, which occurs when rays with different wavelengths enter a round lens, resulting in the rays diffracting differently depending on their wavelength (see Fig. 1, bottom). Transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM) equipped with such aberration correctors have been shown to resolve interatomic spacings approaching 50 pm[1, 2] and achieve single-atom sensitivity [3]. To compare, the highest resolution in uncorrected STEM imaging is about 140 pm at the same electron wavelength [4, 5]. Using aberration-corrected TEMs, one can now also perform atomic resolution imaging with longer wavelength electrons, which tend to be less damaging to samples. This is of particular importance for low-dimensional nanostructures, such as nanotubes, metal clusters, or single-layer sheets containing light constituent atoms, such as lithium, boron, or carbon. One of these novel low-dimensional nanostructures is single-layer hexagonal boron nitride. The hexagonal lattice of boron nitride contains boron and nitrogen atoms separated by a distance of 1.44 Å. This two-dimensional structure exhibits intriguing magnetic and electronic transport properties different from its monoatomic cousin, graphene. Single-layer boron nitride is also very sensitive to electron beams at energies higher than 80 kV. One could use beams of lower FIG. 1: (Top) Spherical aberration: The shorter the focal length, the smaller the spherical aberration coefficient and hence smaller amount of blur. (Bottom) Chromatic aberration: The smaller the energy width of the electron source and/or the better the stability of the high voltage (the lens), the smaller the chromatic spread and hence smaller chromatic aberration. (Illustration: Alan Stonebraker)
منابع مشابه
Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution
Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated...
متن کاملThree-dimensional orientation mapping in the transmission electron microscope.
Over the past decade, efforts have been made to develop nondestructive techniques for three-dimensional (3D) grain-orientation mapping in crystalline materials. 3D x-ray diffraction microscopy and differential-aperture x-ray microscopy can now be used to generate 3D orientation maps with a spatial resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D ori...
متن کاملPALM and STORM: unlocking live-cell super-resolution.
Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm of molecular visualization at the nanometer scale. Resolutions previously only attained with electron microscopes are now within the grasp of light microscope...
متن کاملHigh Resolution and High Sensitivity Imaging of Charge Distribution
Physical characterization of semiconductor device has always been a challenging task for device engineers and researchers. Up to now, standard methods for characterizing semiconductors did not provide an effective means for determining two-dimensional quantities of sub-device scale. These methods include Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Secondary Ion M...
متن کاملSimple synthesis of new nano-sized pore structure vanadium pantoxide (V2O5)
New forms of vanadium oxide Nanoporous were fabricated using a simple chemical synthesis method. Vanadium pentoxide (V2O5) Nanoporous were synthesized by sodium metavanadate as precursor and ethylene glycol as surfactant. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field effect scanning electron microscopy (FESEM) and X-ray diffraction (XRD), Four...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009